Tetrahedron Letters No.38, pp. 2685-2689, 1964. Pergamon Press Ltd. Printed in Great Britain.

> NEIGHBOURING GROUP PARTICIPATION BY SULPHINYL-OXYGEN F. Montanari Istituto di Chimica Organica dell'Università, Modena, Italy E. Danieli, H. Hogeveen, * and G. Maccagnani Istituto di Chimica Organica e Industriale dell'Università, Laboratorio C.N.R., V Gruppo di Ricerca, Bologna, Italy (Received 4 August 1964)

Participation by sulphinyl-axygen as neighbouring group has been previously found (1,2) in iodolactonisation (iodine and sodium hydrogen carbonate in chloroform-water) of <u>syn-3-endo-phenylsulphinylbicyclo[2,2,1]</u> hept-5-ene-2-<u>endo</u>-carboxylic acid (I-a). This acid yields 35% of the iodohydrin (III-a) together with the expected iodolactone, while the anti-isomer (II), as well as the correspondent sulphide and sulphone, yield only the iodolactones. The iodohydrin (III-b) is the only product from the <u>syn</u>-ester (I-b). It has been shown that the reaction proceeds through an inversion at the sulphur atom (2). In ¹⁸O enriched water isotopic exchange at the SO group was observed (2), while none occurred at the OH group.

* Present address: Koninklijke/Shell-Laboratorium, Amsterdam, The Netherlands

2685

The experimental results suggest the existence of a transition state of type (IV), with neighbouring group participation by sulphinyl-axygen, nucleophilic substitution at sulphur, and Walden inversion. Compound (V), m.p. 141° dec., is isolated carring out the reaction in ethanol or in a concentrated solution of water; axcess of water converts compound (V) to the iodohydrin (III-b) [found: C 23.00; H 2.22; I 65.30; $C_{15}H_{16}I_4O_3S$ requires: C 22.98; H 2.06; I 64.76; $\lambda_{max}(C_2H_4CI_2) = 295$ and 365 mµ, characteristic peaks (3) of the I_3^- ion; no absorption was detected, nujol and acetonitrile, in the 1000-1200 cm⁻¹ region (S0 stretching)].

On the basis of these results and of the ligand properties of sulphoxides, which generally are due to the oxygen atom (4), other cases of neighbouring group participation by sulphinyl-oxygen might be anticipated: indeed, a few examples have recently been reported (5).

We directed our attention to sulphoxides in which the sulphinyl-oxygen might provide anchimeric assistance in unimolecular nucleophilic substitutions through a ring intermediate. The rates of solvolysis in 80%-aqueous ethanol (v/v) of tertiary chloro-derivatives Ph-X-(CH₂)_n-C(CH₃)₂Cl, X = SO, S, SO₂, n = 1,2,3, were measured. The solvelysis reactions were followed by conductometric measurements at least up to 75%-conversion, first-order constants being derived by Guggenheim's method (6). The rate constants are reported in Table 1.

TABLE 1

Rates of solvolysis in 80%-ethanol at 35.0° ($k_1 \ge 10^5 \text{ sec.}^{-1}$) of Ph-X-(CH₂)_n-C(CH₃)₂C1 X = SOX = S X = SO2 n 0.15 1 162 125 193 0.87 0.54 2.36 0.99 37.1

(CH₂)₂C-Cl 8.0

2

3

All sulphoxides examined react faster than the parent sulphides; the rate is maximum when n = 2, to say for a cyclic 5 membered intermediate.

$$\begin{bmatrix} P_{h-S} & CH_{3} \\ CH_{2} & CH_{3} \end{bmatrix}^{+} C1^{-}$$

The sulphides rate sequence $(\beta > \delta > \gamma)$ is the same (7) as that observed for the correspondent primary derivatives: in both primary and tertiary series neighbouring group participation by sulphur is particularly strong for the β -derivative. The values found for the sulphones, $\beta < \gamma < \delta < t$ -But-Cl, can be explained on the basis of the inductive effect of the SO₂ group transmitted through the carbon chain. The hydroxy-sulphoxides are the products from the hydrolysis of chloro-sulphoxides in 50%-water-diaxane.

Chloro-sulphides were obtained from the parent hydroxy-sulphides and anhydrous hydrochloric acid in chloroform solution; hydroxy-sulphides from thiophenol and the chlorohydrins $Cl-(CH_2)_n-C(CH_3)_2$ -OH. Chloro-sulphoxides were likewise prepared from the parent hydroxy-sulphoxides, while chloro-

TABLE 2

Compounds	x	Y	m.p.	b.p./mm.	23° D
Ph-X-CH ₂ -C(CH ₃) ₂ -Y	S	Cl	-	59-60°/13	1.5661
Ħ	S	OH	~	136-137°/12	1.5609
Π	S0	OH	117-118°(a)	-	-
Π	so ₂	Cl	44-45°(a)	-	-
Рь-х-(сн ₂) ₂ -с(сн ₃) ₂ -т	S	он	-	110-113º/0.7	-
n	S0	OH	-	162-164°/0.8	1.5573
н	so ₂	Cl	-	153-1550/1	1.5380
Рh-I- (CH ₂) ₃ -С(CH ₃) ₂ -Т	S	OH	-	129-1300/1	1.5511
Ħ	S0	OH	84-85°(a)		-
n	so	C1	-	169-170°/1.5	1.5320

(a) from benzene.

2688

-sulphones were best obtained by oxidising chloro-sulphides with perbenzoic acid.

Chloro-sulphoxides and -sulphides are liquid compounds, which generally decompose by distillation in vacuum: therefore they were employed for kinetic measurements as crude products, without further purification (elemental analyses being always satisfactory). The physical constants of chloro-sulphones, hydroxy-sulphoxides and -sulphides are reported in Table 2.

This work was supported by a grant from the Consiglio Nazionale delle

Ricerche, Rome.

REFERENCES

- S. Ghersetti, H. Hogeveen, G. Maccagnani, F. Montanari, and F. Taddei, J.Chem.Soc., 3718 (1963).
- H. Hogeveen, G. Maccagnani, and F. Montanari, <u>Boll.sci.Fac.chim.ind.Bologna</u>, 21, 257 (1963).
- 3. R.E. Buckles, J.P. Yuk, and A.I. Papov, <u>J.Am.Chem.Soc.</u>, <u>74</u>, 4379 (1952).
- 4. F.A. Cotton and R. Francis, <u>J.Am.Chem.Soc.</u>, 82, 2986 (1960); F.A. Cotton, R. Francis, and W.D. Horrocks, <u>J.Phys.Chem.</u>, 54, 1534 (1960); R.G. Laughlin, <u>J.Org.Chem.</u>, 25, 864 (1960); E. Augdahl and P. Klaeboe, <u>Acta Chem.Scand.</u>, 18, 18 (1964).
- N.J. Leonard and C.R. Johnson, <u>J.Am.Chem.Soc.</u>, 84, 3701 (1962); N.J. Leonard and W.L. Rippie, <u>J.Org.Chem.</u>, 28, 1957 (1963); D.N. Jones and M.A. Saeed, <u>Proc.Chem.Soc.</u>, 81 (1964).
- A.A Frost and R.G. Pearson, <u>Kinetics and Mechanism</u>, 2nd Ed., p. 49, Wiley, New York (1961).
- G.M. Bennett and A.L. Hock, <u>J.Chem.Soc.</u>, 477 (1927); H. Böhme and K. Sell, <u>Ber.</u>, 81, 123 (1948).

2689